Belief Propagation for Probabilistic Slow Feature Analysis
نویسندگان
چکیده
منابع مشابه
Loopy belief propagation and probabilistic image processing
The hyperparameter estimation in the maximization of the marginal likelihood in the probabilistic image processing is investigated by using the cluster variation method. The algorithms are substantially equivalent to generalized loopy belief propagations.
متن کاملBelief Propagation in Qualitative Probabilistic Networks
Qualitative probabilistic networks (QPNs) [13] are an abstraction of in uence diagrams and Bayesian belief networks replacing numerical relations by qualitative in uences and synergies. To reason in a QPN is to nd the e ect of decision or new evidence on a variable of interest in terms of the sign of the change in belief (increase or decrease). We review our work on qualitative belief propagati...
متن کاملLinear Response Formula and Generalized Belief Propagation for Probabilistic Inference
In probabilistic inference for signal processing, medical diagnosis, code theory, digital communication, machine learning and so on, belief propagation (BP) is one of powerful approximate methods to calculate a belief for each node within a practical computational time[1]. Recently, it has been pointed out that the BP has some mathematical structures in common with advanced mean-field (MF) meth...
متن کاملIncremental Slow Feature Analysis
The Slow Feature Analysis (SFA) unsupervised learning framework extracts features representing the underlying causes of the changes within a temporally coherent high-dimensional raw sensory input signal. We develop the first online version of SFA, via a combination of incremental Principal Components Analysis and Minor Components Analysis. Unlike standard batch-based SFA, online SFA adapts alon...
متن کاملDynamic Probabilistic Models for Latent Feature Propagation in Social Networks
Current Bayesian models for dynamic social network data have focused on modelling the influence of evolving unobserved structure on observed social interactions. However, an understanding of how observed social relationships from the past affect future unobserved structure in the network has been neglected. In this paper, we introduce a new probabilistic model for capturing this phenomenon, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Physical Society of Japan
سال: 2017
ISSN: 0031-9015,1347-4073
DOI: 10.7566/jpsj.86.084802